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Abstract. We study two dynamical systems submitted to white and Gaussian random noise acting multi-
plicatively. The first system is an imperfect pitchfork bifurcation with a noisy departure from onset. The
second system is a pitchfork bifurcation in which the noise acts multiplicatively on the non-linear term of
lowest order. In both cases noise suppresses some solutions that exist in the deterministic regime. Besides,
for the first system, the imperfectness of the bifurcation reduces the regime of on-off intermittency. For the
second system, the unstable mode can achieve a jump of finite amplitude at instability but without hys-
teresis. We finally identify a generic property that is verified by the stationary probability density function
of the dynamical variable when a control parameter is varied.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.45.-a
Nonlinear dynamics and chaos – 91.25.-r Geomagnetism and paleomagnetism; geoelectricity

1 Introduction

Instabilities that occur in a real system are submitted to
a certain amount of fluctuations. In some cases these fluc-
tuations are due to external modifications of the system.
One can think for instance to oceanic convection and re-
alize that it can be influenced by the evolution of the at-
mospheric temperature above the ocean. In other cases
instabilities are driven by fields that are strongly fluctuat-
ing. For the dynamo instability, the motion of an electri-
cally conducting liquid creates magnetic field. The velocity
field is the forcing of the magnetic field and in most cases
is strongly turbulent at dynamo onset. Turbulent fluctu-
ations thus modify the instability process driven by the
time-averaged velocity field (see for instance [1]).

In order to understand the possible effects of these fluc-
tuations, it is natural to study dynamical systems sub-
mitted to noise. As a model of system with fluctuating
parameter, Graham and Shenzle studied an amplitude
equation with noisy departure from onset [2]. In such a
case the noise appears multiplying the dynamical variable.
Henceforth, one talks about multiplicative noise. The case
studied by Graham and Shenzle gained a renewed interest
through the work of Yamada et al. and Pikovsky [3]. Nu-
merical simulation of related systems showed a very rich
behavior of the dynamical variable that remains close to
a weakly unstable manifold for long durations (off-phase)
before randomly exploring other states (on-phase). Platt
et al. named this phenomena “on-off intermittency” and
pointed out its relevance to many instability processes [4].
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It has been shown that this phenomena is controlled by
the low frequency spectrum of the noisy departure from
onset [5].

In the aforementioned works, the noise acts on the de-
parture from onset when the system is close to a super-
critical pitchfork bifurcation. In this paper we study two
dynamical systems submitted to multiplicative noise. The
first is an imperfect pitchfork bifurcation with noisy linear
growth rate. The second is a tricritical amplitude equation
whose cubic term fluctuates around a fixed value. In both
cases, the calculation of the stationary probability density
function (PDF) of the variable is a straightforward appli-
cation of the Fokker-Planck equation. We want to discuss
here the possible physical applications of each of these two
systems that display interesting behavior. In the first sys-
tem, one of the deterministic stable solution disappears.
Besides on-off intermittency is strongly reduced. In the
second system, we show that the noise can lead to a finite
jump of the unstable mode at instability onset but with
no hysteresis. Based on the behavior of the PDF of the
two systems, we finally identify a property of the evolu-
tion of the stationary PDF of the dynamical variable when
a control parameter is changed.

2 Imperfect pitchfork bifurcation

Several experiments are being performed to achieve the
dynamo instability [6,7]. In these experiments, the ve-
locity field is highly turbulent. Therefore an intermittent
regime could have been expected close to the instability
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Fig. 1. Stable solution of equation (1) for ζ(t) = 0 and ε = 0
(dashed line) and ε = 0.001 (full line).

threshold. However such regime has not been reported for
the experiments that have currently reached the dynamo
onset [6]. There are several possible explanations. First the
spectrum of the turbulent velocity field is far from being
white. As mentioned above, when the low frequency spec-
trum of the departure from onset is reduced, the size of the
intermittent regime shrinks [5]. This can explain that no
intermittency was observed in the dynamo experiments.
Secondly the Earth magnetic field can be put forward.
This field acts as a source term in the induction equation
that describes the evolution of the magnetic field gener-
ated by the dynamo process. For dynamos with strongly
constrained velocity field, the fluctuation rate is small and
the source term is roughly constant in time. In the fol-
lowing we want to model the likely modification of the
dynamo instability process caused by the Earth magnetic
field. To estimate qualitatively the effects of this magnetic
field we investigate an imperfect pitchfork bifurcation sub-
mitted to a multiplicative noise

Ẋ = ε + (a + ζ(t))X − X3 (1)

where a is the control parameter, ζ(t) is a random noise
and ε > 0 quantifies the gap from the perfect pitchfork
bifurcation (ε = 0).

Without noise, the stable solutions of (1) are shown
Figure 1. Algebraic manipulations of third degree equa-
tions give the following well-known expression for the so-
lutions.
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For any value of the parameters, x = M is a real solution.
If a ≥ 3M2/4 then two other real solutions are given by

x = −M
2 ±

√
−3M2

4 + a, the smaller one being linearly
stable.

Figure 2 displays the temporal traces of X(t) for a
white and Gaussian random noise defined by

〈ζ(t)ζ(t′)〉 = Dδ(t − t′), (2)
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Fig. 2. Temporal traces of the dynamical variable X(t) solu-
tion of (1) with a = 0.01 and D = 0.05 and (a) ε = 0; (b)
ε = 0.0001; (c) ε = 0.001.

with D = 0.05 and a = 0.01, at three different values of ε.
The increase of ε modifies the off-phases that become in-
creasingly fluctuating. Moreover we underline that what-
ever the initial condition X(t = 0), the system verifies
X(t) ≥ 0 after a transcient behavior. This disappearance
of the negative branch in presence of multiplicative noise
can be explained qualitively as follows. Starting from a
negative value for X , there are events of the forcing that
drive the system close to X = 0. Then, equation (1) shows
that the velocity Ẋ is equal to ε resulting in a drift of X
into the half plane X ≥ 0. Once X is positive it cannot
crosses down the X-axis since the velocity Ẋ is positive
for X = 0.

These facts are confirmed by the computation of
the Probability Density Function (PDF) of X using the
Fokker–Planck equation corresponding to (1). Within the
framework of the Stratonovich interpretation of white
noise, the stationary PDF is [9]:

X ≤ 0, P (X) = 0

X > 0, P (X) = C|X |2a/D−1 exp
(
−X2

D
− 2ε

DX

)
(3)

where C is a normalization constant.
We show in Figure 3 the theoretical prediction (3) and

the PDF extracted from the numerical simulations dis-
played in Figure 2. The effect of ε is to induce a cut-off in
the PDF for Xc � 2ε/D. Below this value, the PDF tends
fastly towards zero. For 2a < D, the PDF can still follow
a power law with negative exponent for

2ε

D
� X �

√
D . (4)

The width of this power law is strongly reduced when ε
increases. This is the signature of the disappearance of
the intermittent regime when ε increases as displayed in
Figure 2. Indeed, a positive ε forces X to wander away
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Fig. 3. PDF of the dynamical variable given by (1) with: a =
0.01, D = 0.05 and ε = 0 (+); ε = 0.0001 (∗); ε = 0.001 (×).
Full lines correspond to the equation (3).
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Fig. 4. PDF of the dynamical variable given by (1) with ε =
0.001, D = 0.05 and: a = −0.001 (×); a = −0.01 (∗); a =
−0.1 (+). Full lines correspond to the equation (3). The inset
is the same figure in log-log scales.

from X = 0. Even in the presence of noise, the system does
not spend long durations close to X = 0. Consequently its
PDF does not diverge for X = 0. Besides, for high enough
ε (of the order of a fraction of D3/2 or larger), the PDF
does not display any power law. Notice that for a perfect
supercritical bifurcation (ε = 0) a similar reduction of the
on-off intermittent behavior can also be due to additive
noise [8].

Finally we underline that the PDF (3) is defined for
all values of a — positive or negative — i.e. there are
extended fluctuations even for a � 0 as illustrated in Fig-
ure 4. Therefore the threshold is smoothed and less pre-
cisely defined than in the perfect case (ε = 0) where the
PDF of X is a delta function for a < 0. This is because,
even for negative a, X = 0 is not a solution for non-zero
ε. Therefore the noisy term ζ(t)X(t) does not vanish as
it would do if X = 0 were a solution. The effect is then
similar to that of an additive noise that enlarges the PDF
of the stationary state.

−1 0 1

0

1

2

X

V
(X

)

Fig. 5. Potential V (X) defined by equation (6) for b = −1,
(−): a = 1, (−·): a = −1.

3 Amplitude equation with a fluctuating
non linear term

We now study an amplitude equation with a fluctuating
cubic term

Ẋ = aX + (b + ζ(t))X3 − X5, (5)

where X is a function of time t and ζ(t) is a noise.
We first discuss the well-known no-noise regime,

ζ(t) = 0. Equation (5) can be seen as the evolution equa-
tion of an overdamped particle moving in the potential

V (X) = −aX2

2
− bX4

4
+

X6

6
. (6)

If b < 0, both non-linear terms limit the linear growth
that occurs for positive a. We plot in Figure 5 the form
of V for a positive and a negative value of a and b = −1.

The instability is supercritical. It does not display hys-
teresis and, in Figure 1, the asymptotic solution of equa-
tion (5) as a function of a is presented (dashed line). For
small values of a, the long time value of X is ±√−a/b
depending on the initial condition.

If b = 0, there is no cubic term. The instability is
tricritical. It does not display hysteresis and for positive a
the long-time value of X is ±a1/4 depending on the initial
condition.

If b > 0, the cubic term can lead to a non-linear
instability. We plot in Figure 6 the form of V for dif-
ferent values of a, b being fixed to one. If a is smaller
than −b2/4, V has only one minimum at X = 0. If
− b2

4 ≤ a ≤ 0, there are three minima: X = 0, X = ±Xm

with Xm = ( b+
√

b2+4a
2 )1/2. For a ≥ 0, there are two min-

ima X = ±Xm. The instability is subcritical and displays
hysteresis for − b2

4 ≤ a ≤ 0. We plot in Figure 7 the long
time value of X .

We now tackle the case with noise. ζ is chosen to be a
Gaussian white noise with autocorrelation given by equa-
tion (2). Equation (5) is understood as a Stratonovich
equation [9] and we calculate the expression of the sta-
tionary PDF of X . We obtain for negative a,

P (X) = δ(X),
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Fig. 6. Potential V (X) for b = −1, (−·): a = −1/2, (−−):
a = −3/16, (−): a = 1/16.
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Fig. 7. Asymptotic value of X for b = 1, (−) stable solutions,
(.) unstable solutions.

and for positive a,

P (X) = C X− 2
D −3 exp

(
− a

2D X4
− b

D X2

)
, (7)

where C is a normalisation constant. We first note that
the solution X = 0 is unstable for positive a regardless of
the value of b.

We now look for the most probable value Xmp of X .
It is a solution of

(2 + 3D)X4
mp − 2bX2

mp − 2a = 0 . (8)

In the small a limit, we get

b < 0, Xmp �
(

a(2 + 3D)
|b|D

) 1
2

,

b = 0, Xmp =
(

2a

2 + 3D

) 1
4

,

b > 0, Xmp � 2b

2 + 3D
. (9)

Concerning the moments of X , we note that the PDF is
large and that no moment 〈Xn〉 exists for n ≥ 2 + 2/D.
In any case, the second moment exists and in the small a
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Fig. 8. Temporal traces X(t) solution of equation (5) for D =
0.1, a = 0.01 and from the bottom to the top b = −1, b = 0
and b = 1.
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Fig. 9. Stationary PDF of X solution of equation (5) for b =
−1, D = 0.1 and (�): a = 1, (◦): a = 0.1 and (�): a = 0.01.
The related theoretical prediction, equation (7), are displayed
as continuous line.

limit reads

b < 0, 〈X2〉 � a

|b| ,

b = 0, 〈X2〉 � (
a

2D
)

1
2

Γ ( 1
2D )

Γ ( 1
2D + 1

2 )
,

b > 0, 〈X2〉 � b. (10)

To test our predictions, we solve numerically equation (5).
Note that if X(t = 0) is positive, resp. negative, then
X remains positive for all time, resp. negative. Therefore
we restrict our calculations to positive X . We display in
Figure 8 the solution for a = 0.01, D = 0.1 and b =
−1, 0, 1. We plot in Figures 9, resp. 10, the stationary
PDF of X for b = −1, resp. b = 0, and various positive
values of a. The second moments of X are displayed in
Figures 11, 12.

In the case b ≤ 0, the noise does not strongly modify
the instability process. It merely changes the coefficients
of the laws that relate Xmp and 〈X2〉 to a. The noise does
not change the exponent of these laws: Xmp and

√〈X2〉
remain proportional to a1/2 for b < 0 and to a1/4 for b = 0
as in the deterministic case.

The effect of the noise is more important for b > 0.
Indeed the hysteretic behavior of the deterministic system
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Fig. 10. Stationary PDF of X for b = 0, D = 0.1 and (�):
a = 1, (◦): a = 0.1 and (∗): a = 0.01. The related theoretical
prediction, equation (7), are displayed as continuous line.
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Fig. 11. Second moment of X, 〈X2〉, as a function of a for b =
−1 and D = 0.1. (o): numerical simulations, (−) theoretical
prediction equation (10).

is destroyed. In the presence of noise, the instability takes
place at a = 0. Both Xmp and 〈X2〉 realize a jump of finite
amplitude at a = 0. They are discontinuous but without
hysteresis. We plot in Figure 13 the numerically computed
PDF of X for b = 1 and different values of a. The value
of the second moment 〈X2〉 is displayed as a function of
a in Figure 14.

This is the main effect of the noise acting on the cubic
term: for positive b, it leads to a discontinuous instability
but with no hysteresis. The disappearance of the subcriti-
cal branch can be explained as follows. For positive b and
−b2/4 ≤ a ≤ 0, the potential V (X) has three minima.
The minimum at X = 0 is locally stable whatever the
sign of b. Thus if X gets close to zero, it remains there.
The other two minima are locally stable for positive b.
However the coefficient of the cubic term is b + ζ(t) . It
fluctuates and, from time to time, is negative. Then the
two non-zero minima disappear and X tends to the only
remaining minimum X = 0. If X gets close enough to zero
before the two other minima appear again, then it remains
there because X = 0 is locally stable. Note that the time
required for X to escape from one of the non-zero minima
diverges when a tends to zero by negative values. Numeri-
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Fig. 12. Second moment of X, 〈X2〉, as a function of a for
b = 0 and D = 0.1. (o): numerical simulations, (−) theoretical
prediction equation (10).
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Fig. 13. Stationary PDF of X for b = 1, D = 0.1 and (�):
a = 1, (×): a = 0.1, (�): a = 0.01 and (∗): a = 0.001. The
related theoretical prediction, equation (7), are displayed as
continuous line.
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Fig. 14. Second moment of X, 〈X2〉, as a function of a for
b = 1 and D = 0.1. (o): numerical simulations, (−) theoretical
prediction equation (10).

cal simulations require careful estimation of this duration
to achieve stationary states.

Horsthemke and Malek-Mansour studied a similar in-
stability process submitted to multiplicative noise [10].
By solving the Fokker-Planck equation related to their
model, they predicted the disappearance of a subcritical
branch. Our explanation for the mechanism governing this
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Fig. 15. Sketch of the generic processes involved in the modifi-
cations of a PDF. Process 1 is the creation of a new maximum,
process 2 is the disappearance of an existing maximum.

phenomenon is also pertinent for their model. Moreover,
in our case, we study the whole bifurcation diagram of the
instability. We prove that the disappearance of the sub-
critical branch can lead to a discontinuous behavior for
any moment of the variable but without hysteresis.

4 Summary

We now summarize the results obtained for the two sys-
tems under study. In both cases, the white and Gaussian
multiplicative random noise can suppress solutions that
exist in the no-noise regime. Other effects depend on the
system.

For an imperfect pitchfork bifurcation with noisy lin-
ear growth rate, we identify three main effects. First, if
ε > 0, the stationary state verifies X(t) ≥ 0. Therefore one
of the deterministic branches of solution disappears. Any
amount of noise leads to the suppression of this branch.
Secondly, even for negative a, the PDF is not a delta-
function. Therefore multiplicative noise acting on an im-
perfect pitchfork bifurcation leads to large PDF whatever
the parameter values. Third, the power-law with negative
exponent of the PDF and the on-off intermittent behav-
ior of the system are reduced by an imperfect bifurcation.
This can be important in experiments that try to achieve
on-off intermittency.

For an amplitude equation with fluctuating cubic term
the effect of noise depends on the average of the coefficient
of the cubic term. If it is in average negative or zero, i.e.
if without noise the instability is supercritical or tricrit-
ical, the effect of noise is just to modify the coefficient
of the laws that relate the second moment

〈
X2

〉
or the

most probable value Xmp with the departure from onset a.
The effect is more striking if b is positive, i.e. if without
noise, the instability were subcritical. Then the subcritical
branch disappears. The solution is such that

〈
X2

〉
or Xmp

achieves a jump of finite amplitude at instability onset (for
a = 0) but without hysteretic behavior. Notice that the
jump occurs at a = 0 and is therefore located at an higher
value than that of the “Maxwell plateau” defined by the
two minima of the potential having the same value.

To conclude, we present a conservation law that is ver-
ified by the stationary PDF of a variable when a control
parameter is changed. Let Pa(X) be the stationary PDF
of a random variable X . The average on all the possible
initial conditions is performed and a is a parameter that
controls the dynamical evolution of the variable X . We
define the index A of this PDF by

A = �min Pa − �max Pa, (11)

i.e. the difference between the number of local minimum
of Pa and the number of local maximum of Pa. We believe
that A is a constant that does not depend on a. We do
not have rigorous proof of this result but a heuristic one is
based on the following idea. When a PDF changes shape
because of the variation of a parameter, only two behav-
ior are possible. These processes are sketched in Figure 15.
First a new maximum of the PDF can appear. Simulta-
neously a new minimum is created between the former
maximum and the new one. Secondly the reverse process
can take place: two maxima can merge into one maxi-
mum. Then one maximum disappears but simultaneously
the minimum that was located between the two maxima
disappears. Therefore, for both processes the index A of
the PDF is conserved. If there are no other possible pro-
cess of evolution of the PDF, then A is constant. Note that
for the processes studied here and in other works [2,5], A is
indeed a constant.

We thank Bernard Derrida, Nicolas Leprovost, Kirone Mallick
and Stephan Fauve for fruitfull discussions.
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